4.6 Article

Transcriptome and proteome analysis of soleus muscle of hormone-sensitive lipase-null mice

期刊

JOURNAL OF LIPID RESEARCH
卷 46, 期 12, 页码 2614-2623

出版社

ELSEVIER
DOI: 10.1194/jlr.M500028-JLR200

关键词

skeletal muscle; metabolic switch; glycogen; proteomics

向作者/读者索取更多资源

Hormone-sensitive lipase (HSL), a key enzyme in fatty acid mobilization in adipocytes, has been demonstrated also in skeletal muscle. To gain further insight into the role and importance of HSL in skeletal muscle, a transcriptome analysis of soleus muscle of HSL-null mice was performed. A total of 161 transcripts were found to be differentially expressed. Increased mRNA levels of fructose-1,6-bisphosphatase, fructose-2,6-bisphosphatase, and phosphorylase kinase gamma 1A suggest a higher glycogen flux in soleus muscle of HSL-null mice. An observed increase in the utilization of glycogen stores supports this finding. Moreover, an increased amount of intramyocellular lipid droplets, observed by transmission electron microscopy, suggests decreased mobilization of lipid stores in HSL-null mice. To complement the transcriptome data, protein expression analysis was performed. Five spots were found to be differentially expressed: pyruvate dehydrogenase E1 alpha, creatine kinase (CK), ankyrin-repeat domain 2, glyceraldehyde-3-phosphate dehydrogenase, and one protein yet to be identified. The increased protein level of CK indicates creatine phosphate degradation to be of increased importance in HSL-null mice. The results of this study suggest that in the absence of HSL, a metabolic switch from reliance on lipid to carbohydrate energy substrates takes place, supporting an important role of HSL in soleus muscle lipid metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据