4.6 Article

Diffusion and transport of spin pulses in an n-type semiconductor quantum well -: art. no. 113702

期刊

JOURNAL OF APPLIED PHYSICS
卷 98, 期 11, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2136232

关键词

-

向作者/读者索取更多资源

We perform a theoretical investigation on the time evolution of spin pulses in an n-type GaAs (001) quantum well with and without external electric field at high temperatures by constructing and numerically solving the kinetic spin Bloch equations and the Poisson equation, with the electron-phonon, electron-impurity, and electron-electron Coulomb scatterings explicitly included. The effect of the Coulomb scattering, especially the effect of the Coulomb drag on the spin diffusion/transport is investigated and it is shown that the spin oscillations and spin polarization reverse along the direction of spin diffusion in the absence of the applied magnetic field, which were originally predicted in the absence of the Coulomb scattering by Weng and Wu [J. Appl. Phys. 93, 410 (2003)], can sustain the Coulomb scattering at high temperatures (similar to 200 K). The results obtained are consistent with a recent experiment in bulk GaAs but at a very low temperature (4 K) by Crooker and Smith [Phys. Rev. Lett. 94, 236601 (2005)]. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据