4.5 Article

Effect of human amniotic fluid on bone healing

期刊

JOURNAL OF SURGICAL RESEARCH
卷 129, 期 2, 页码 283-287

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jss.2005.03.026

关键词

human amniotic fluid; bone healing; hyaluronic acid

类别

向作者/读者索取更多资源

Background. Bone healing continues to pose challenges for researchers and clinicians working in the field of plastic surgery. Complete bone regeneration cannot be obtained in critical size osseous defects without the application of osteogenic or osteoinductive bone material. In this study, we hypothesized that because extracellular matrix components are known to play a major role in the first steps of healing during bone or injury healing and because hyaluronic acid as chondroitin sulfate is recognized as an osteogenic compound without osteoinductive activity, human amniotic fluid, which contains high concentrations of hyaluronic acid, gyaluronic acid -stimulating activator, and other factors, might accelerate bone healing when applied subperiosteally to rabbit calvarial defects. Materials and methods. We created 20 calvarial defects in 10 12-week-old New Zealand white rabbits who were divided into 2 groups. Group 1 defects were instilled with human amniotic fluid, whereas the group with contralateral defects, i.e., group 2, were given with same amount of normal saline solution. We then measured the density of the bone that formed over the defects using computed tomography at the third, fourth, fifth, and sixth weeks postoperatively. After this period, the defects were harvested for histopathologic evaluation. Results. The defects from group 1, which were treated with human amniotic fluid, showed significantly higher ossification than the group 2 defects, which were instilled with saline solution. Histological examination at 6 weeks postoperatively revealed that the defects treated with human amniotic fluid (group 1) had superior ossification compared with the control group defects (group 2). Conclusion. Because of its positive effects on bone healing and also because of its ability to be stored in deep freeze if made cell-free, human amniotic fluid would appear to be a useful adjunct in the treatment of bone healing. (c) 2005 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据