4.5 Article

Evaluation of solder joint reliability in flip-chip packages during accelerated testing

期刊

JOURNAL OF ELECTRONIC MATERIALS
卷 34, 期 12, 页码 1550-1557

出版社

SPRINGER
DOI: 10.1007/s11664-005-0164-8

关键词

flip chip; reliability; finite-element analysis; fatigue; Sn-3.0Ag-0.5Cu

向作者/读者索取更多资源

The microstructural investigation and thermomechanical reliability evaluation of the Sn-3.0Ag-0.5Cu solder bumped flip-chip package were carried out during the thermal shock test of the package. In the initial reaction, the reaction product between the solder and Cu mini bump of chip side was Cu6Sn5 intermetallic compound (IMC) layer, while the two phases which were (Cu,Ni)(6)Sn-5 and (Ni,Cu)(3)Sn-4 were formed between the solder and electroless Ni-P layer of the package side. The cracks occurred at the corner solder joints after the thermal shocks of 400 cycles. The primary failure mechanism of the solder joints in this type of package was confirmed to be thermally-activated solder fatigue failure. The premature brittle interfacial failure sometimes occurred in the package side, but nearly all of the failed packages showed the occurrence of the typical fatigue cracks. The finite-element analyses were conducted to interpret the failure mechanisms of the packages, and revealed that the cracks were induced by the accumulation of the plastic work and viscoplastic shear strains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据