4.5 Article

The effect of combined cyclic mechanical stretching and microgrooved surface topography on the behavior of fibroblasts

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.30480

关键词

microtexture; mechanical stretch; connective tissue; fibroblast cells

向作者/读者索取更多资源

Under the influence of mechanical stress, cultured fibroblasts have a tendency to orient themselves perpendicular to the stress direction. Similar cell alignment can be induced by guiding cells along topographical clues, like microgrooves. The aim of this study was to evaluate cell behavior on microgrooved substrates, exposed to cyclic stretching. We hypothesized that cellular shape is mainly determined by topographical clues. On basis of earlier studies, a 10-mu m wide square groove, and a 40-mu m wide V-shaped groove pattern were used. Smooth substrates served as controls. Onto all substrates fibroblasts were cultured and 1-Hz cyclic stretching was applied (0, 4, or 8%) for 3-24 h. Cells were prepared for scanning electron microscopy, immunostaining of filamentous actin, alignment measurements, and PCR (collagen-I, fibronectin, alpha 1- and beta 1-integrins). Results showed that cells aligned on all grooved surfaces, and fluorescence microscopy showed similar orientation of intracellular actin filaments. After 3 h of stretch, cellular orientation started to commence, and after 24 h the cells had aligned themselves almost entirely. Image analysis showed better orientation with increasing groove depth. Statistical testing proved that the parameters groove type, groove orientation, and time all were significant, but the variation of stretch force was not. Substrates with microgrooves perpendicular to the stretch direction elicit a better cell alignment. The expression of beta 1-integrin and collagen-I was higher in the stretched samples. In conclusion, we can maintain our hypothesis, as microgrooved topography was most effective in applying strains relative to the long axis of the cell, and only secondary effects of stretch force were present. (c) 2005 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据