4.8 Article

The BME3 (Blue Micropylar End 3) GATA zinc finger transcription factor is a positive regulator of Arabidopsis seed germination

期刊

PLANT JOURNAL
卷 44, 期 6, 页码 960-971

出版社

WILEY
DOI: 10.1111/j.1365-313X.2005.02588.x

关键词

GATA zinc finger protein; seed germination; dormancy; cold stratification; gibberellic acid biosynthesis genes; enhancer trap

向作者/读者索取更多资源

In many plant species, seed dormancy is broken by cold stratification, a pre-chilling treatment of fully imbibed seeds. Although the ecological importance of seed response to cold temperature is well appreciated, the mechanisms underlying the physiological changes during cold stratification is unknown. Here we show that the GATA zinc finger protein expressed in Arabidopsis seeds during cold stratification plays a critical role in germination. Characterization of an enhancer-trap population identified multiple lines that exhibited beta-glucuronidase (GUS) expression in the micropylar end of the seed ( named Blue Micropylar End, BME lines). One of these lines, BME3, had a T-DNA insertion site in the 5' upstream region of a GATA-type zinc finger transcription factor gene (termed BME3-ZF). The BME3-ZF mRNA accumulated in seeds during cold stratification. Characterization of the BME3-ZF promoter indicated that this gene was activated specifically in the embryonic axis, which was still enclosed by the endosperm. The zinc finger gene knockout plants produced seeds exhibiting deeper dormancy, which showed reduced response to cold stratification. The ungerminated knockout seeds exhibited testa rupture, but failed to penetrate the endosperm layer. Application of gibberellic acid (GA(3)) rescued impaired germination of knockout seeds without cold stratification, indicating that the normal GA signal transduction pathway is present in the knockout mutants. Expression of GA(20)-oxidase and GA(3)-oxidase genes was greatly reduced in the knockout seeds, suggesting the potential involvement of the zinc finger protein in GA biosynthesis. These results suggest that the GATA zinc finger protein is a positive regulator of seed germination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据