4.6 Article

Fidelity for the quantum evolution of a Bose-Einstein condensate

期刊

PHYSICAL REVIEW A
卷 72, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.063623

关键词

-

向作者/读者索取更多资源

We investigate fidelity for the quantum evolution of a Bose-Einstein condensate (BEC) and reveal its general property with a simple two-component BEC model. We find that, when the initial state is a coherent state, the fidelity decays with time in the ways of exponential, Gaussian, and power law, depending on the initial location, the perturbation strength, as well as the underlying mean-field classical dynamics. In this case we find a clear correspondence between the fast quantum fidelity decay and the dynamical instability of the mean-field system. With the initial state prepared as a maximally entangled state, we find that the behavior of fidelity has no classical correspondence and observe an interesting behavior of the fidelity: periodic revival, where the period is inversely proportional to the number of bosons and the perturbation strength. An experimental observation of the fidelity decay is suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据