4.7 Article

Sequential changes in BDNF mRNA expression and synaptic levels of AMPA receptor subunits in rat hippocampus after chronic antidepressant treatment

期刊

NEUROPHARMACOLOGY
卷 49, 期 8, 页码 1178-1188

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuropharm.2005.07.006

关键词

antidepressants; AMPA receptors; brain-derived neurotrophic factor; hippocampus; synaptic plasticity

向作者/读者索取更多资源

Increased expression of brain-derived neurotrophic factor (BDNF) appears to be involved in the mechanism of action of antidepressant drugs. It has also been proposed that potentiation of the AMPA receptor (AMPAR) function may be useful in the treatment of depression. Here we looked for the time course of the effect of different doses of two antidepressants, desipramine (DMI) and paroxetine (PAR), which differentially affect monoamine reuptake, on BDNF mRNA expression in hippocampal subfields (CA1, CA3 and dentate gyrus) and levels of AMPAR subunits in total and membrane-enriched extracts from rat hippocampus., Acute antidepressant treatment changed neither BDNF mRNA expression nor AMPAR subunit levels. In chronic treatments, rats were treated daily with the antidepressants for 7-21 days. PAR produced a time- and dose-dependent increase of BDNF expression in the three hippocampal subfields examined. On the contrary, the effect of DMI on BDNF mRNA was neither dose- nor time-dependent. In rats receiving the same chronic antidepressant treatments, PAR produced a dose-dependent increase of GluR1 and GluR2/3 levels in the membrane fraction after a 3-week treatment, and not at earlier times. DMI increased the membrane levels of AMPAR subunits after a 3-week treatment with the lower dose tested. However, a higher dose, 15 mg/kg, did not produce any change in AMPAR subunits and reduced membrane levels of a-tubulin and PSD-95, possibly indicating a disorganization of membrane scaffolding proteins. The results suggest that paroxetine, but not desipramine, enhances synaptic plasticity in the hippocampus by increasing BDNF mRNA expression, which determines a later AMPAR subunit trafficking to synaptic membranes. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据