4.5 Article Proceedings Paper

Tissue engineering of human heart valve leaflets: A novel bioreactor for a strain-based conditioning approach

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 33, 期 12, 页码 1778-1788

出版社

SPRINGER
DOI: 10.1007/s10439-005-8025-4

关键词

heart valve prostheses; bioreactor; mechanical conditioning; straining; modeling

向作者/读者索取更多资源

Current mechanical conditioning approaches for heart valve tissue engineering concentrate on mimicking the opening and closing behavior of the leaflets, either or not in combination with tissue straining. This study describes a novel approach by mimicking only the diastolic phase of the cardiac cycle, resulting in tissue straining. A novel, yet simplified, bioreactor system was developed for this purpose by applying a dynamic pressure difference over a closed tissue engineered valve, thereby inducing dynamic strains within the leaflets. Besides the use of dynamic strains, the developing leaflet tissues were exposed to prestrain induced by the use of a stented geometry. To demonstrate the feasibility of this strain-based conditioning approach, human heart valve leaflets were engineered and their mechanial behavior evaluated. The actual dynamic strain magnitude in the leaflets over time was estimated using numerical analyses. Preliminary results showed superior tissue formation and non-linear tissue-like mechanical properties in the strained valves when compared to non-loaded tissue strips. In conclusion, the strain-based conditioning approach, using both prestrain and dynamic strains, offers new possibilities for bioreactor design and optimization of tissue properties towards a tissue-engineered aortic human heart valve replacement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据