4.7 Article

Thermal conductivity of boron nitride-filled thermoplastics: Effect of filler characteristics and composite processing conditions

期刊

POLYMER COMPOSITES
卷 26, 期 6, 页码 778-790

出版社

WILEY
DOI: 10.1002/pc.20151

关键词

-

向作者/读者索取更多资源

The thermal conductivity of boron nitride (BN)-filled poly(butylene terephthalate) (PBT) was investigated as a function of particle size, aspect ratio, surface area, surface chemistry, and concentration of BN as well as composite processing methods and conditions. In the low filler concentration region, a larger BN surface area resulted in lower thermal conductivity of the composites as a result of phonon scattering at interfaces. In the high filler concentration region the ease in forming filler networks, as reflected by the aspect ratio of BN, played a more dominant role. A percolation-like behavior was observed when BN networks were formed while the thermal conductivity at close vicinity of the percolation threshold was not completely governed by the scaling law of classic percolation theory. High shear force employed in extrusion was effective in dispersing BN agglomerates into fine platelets while also inducing PBT degradation. When a low screw speed was used in extrusion followed by injection molding, the samples exhibited significantly lower thermal conductivity, which may be attributed to flow-induced orientation of BN platelets in the direction perpendicular to the heat flow, relatively low concentration of filler at sample surfaces (skin-core effect), and agglomeration of the BN platelets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据