3.8 Article Proceedings Paper

Epididymal cysteine-rich secretory protein 1 encoding gene is expressed in murine hair follicles and downregulated in mice overexpressing Hoxc13

出版社

NATURE PUBLISHING GROUP
DOI: 10.1111/j.1087-0024.2005.10114.x

关键词

Crisp1; hair follicle; Hox target gene; Hoxc13; medulla

资金

  1. NIAMS NIH HHS [AR47204-04] Funding Source: Medline

向作者/读者索取更多资源

Members of the Hox gene family of transcriptional regulators are believed to play essential roles in hair follicle differentiation, although little is known about the molecular mechanisms mediating these putative control functions. Transgenic mice overexpressing Hoxc13 in hair follicles (GC13 mice) exhibit complex phenotypic alterations including hair shaft defects and alopecia, as well as severe epidermal abnormalities. To identify some of the genetic pathways affected by Hoxc13 overexpression in hair, we performed large-scale differential gene expression analysis on the skin of 5-d GC13 versus normal FVB mice using DNA chip assays. A surprising result of these experiments was the identification of the epididymal cysteine-rich secretory protein 1 (Crisp1) gene as one of the genes with the greatest expression differential, in this case with greater than 20-fold downregulation in skin from GC13 mice. Crisp1 encodes a secreted protein that has originally been found to be abundantly expressed in the epididymis, where it plays a role in sperm maturation. We have localized Crisp1 mRNA in 5-d postnatal murine scapular skin by in situ hybridization, showing its expression to be restricted to the medulla of the hair shaft. Furthermore, we provide evidence for specific interaction of Hoxc13 with at least one cognate binding site found in the Crisp1 promoter region, thus supporting the concept of a Hoxc13/Crisp1 regulatory relationship. In summary, these data establish the hair as a novel site for Crisp1 expression where its functional role remains to be determined.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据