4.6 Article

Change of Young's modulus of cold-deformed pure iron in a tensile test

出版社

MINERALS METALS MATERIALS SOC
DOI: 10.1007/s11661-005-0006-6

关键词

-

向作者/读者索取更多资源

Changes in Young's modulus E (determined according to ASTM E-111) of polycrystalline pure iron deformed by a tensile test at room temperature are determined. From its original mean value. 210 GPa, E decreased with deformation to a mean value of 196 GPa at epsilon = 0.060. Thereafter, slight recovery occur-red and E stabilized to 198 GPa until the appearance of neck (epsilon = 0.100). With the aim to examine the causes of this behavior, residual stresses and textures were measured and the dislocation structure was observed by transmission electron microscopy (TEM). Longitudinal residual stresses,, increased from the first step of deformation (epsilon = 0.015) and remained constant until the samples fractured. There was no significant difference in texture throughout the deformation process, during which the increment of alpha fiber was smooth. Thus, the decrease of E cannot be attributed to residual stresses or textures. A relationship between dislocation arrangement and decrease of E is proposed. Following the model established by Mott, dislocations can bow out in their glide planes, giving extra elastic strain and thus a decrease of E. The increase of the dislocation density during the first steps of deformation lowers the E values, since the extra elastic strain increases. At higher strains, when the cellular dislocation structure has formed (between epsilon = 0.060 and 0.080), the dislocations in cell interiors are capable of giving an extra elastic strain, whereas the dislocations trapped in the cell walls are not. However, the dislocation density in cell interiors is lower than the dislocation density in the early stages of deformation in which the cell structure has not been developed. This produces the slight recovery of E measured at these strains. From epsilon = 0.080, the values of E stabilized since no changes in dislocation density in cell interiors are observed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据