4.7 Article

Ligand-dependent de-repression via EcR/USP acts as a gate to coordinate the differentiation of sensory neurons in the Drosophila wing

期刊

DEVELOPMENT
卷 132, 期 23, 页码 5239-5248

出版社

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.02093

关键词

ultraspiracle; ecdysone receptor; broad-complex; timing of differentiation; imaginal discs

资金

  1. NINDS NIH HHS [NS29971, NS13079] Funding Source: Medline

向作者/读者索取更多资源

Loss of function of either the ecdysone receptor (EcR) or Ultraspiracle (USP), the two components of the ecdysone receptor, causes precocious differentiation of the sensory neurons on the wing of Drosophila. We propose that the unliganded receptor complex is repressive and that this repression is relieved as the hormone titers increase at the onset of metamorphosis. The point in development where the receptor complex exerts this repression varies for different groups of sensilla. For the chemosensory organ precursors along the wing margin, the block is at the level of senseless expression and is indirect, via the repressive control of broad expression. Misexpressing broad or senseless can circumvent the repression by the unliganded receptor and leads to precocious differentiation of the sensory neurons. This precocious differentiation results in the misguidance of their axons. The sensory precursors of some of the campaniform sensilla on the third longitudinal vein are born prior to the rise in ecdysone. Their differentiation is also repressed by the unliganded EcR/USP complex but the block occurs after senseless expression but before the precursors undertake their first division. We suggest that in imaginal discs the unliganded EcR/USP complex acts as a ligand-sensitive 'gate' that can be imposed at various points in a developmental pathway, depending on the nature of the cells involved. In this way, the ecdysone signal can function as a developmental timer coordinating development within the imaginal disc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据