4.5 Article Proceedings Paper

On the passive cardiac conductivity

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 33, 期 12, 页码 1743-1751

出版社

SPRINGER
DOI: 10.1007/s10439-005-7257-7

关键词

conductivity; cardiac tissue; bidomain; cardiac modeling

向作者/读者索取更多资源

In order to relate the structure of cardiac tissue to its passive electrical conductivity, we created a geometrical model of cardiac tissue on a cellular scale that encompassed myocytes, capillaries, and the interstitial space that surrounds them. A special mesh generator was developed for this model to create realistically shaped myocytes and interstitial space with a controled degree of variation included in each model. In order to derive the effective conductivities, we used a finite element model to compute the currents flowing through the intracellular and extracellular space due to an externally applied electrical field. The product of these computations were the effective conductivity tensors for the intracellular and extracellular spaces. The simulations of bidomain conductivities for healthy tissue resulted in an effective intracellular conductivity of 0.16 S/m (longitudinal) and 0.005 S/m (transverse) and an effective extracellular conductivity of 0.21 S/m (longitudinal) and 0.06 S/m (transverse). The latter values are within the range of measured values reported in literature. Furthermore, we anticipate that this method can be used to simulate pathological conditions for which measured data is far more sparse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据