4.7 Article

Response of microbial community composition and activity in agricultural and grassland soils after a simulated rainfall

期刊

SOIL BIOLOGY & BIOCHEMISTRY
卷 37, 期 12, 页码 2249-2262

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.soilbio.2005.02.038

关键词

annual grassland; agriculture; CO2 efflux; disturbance; Nassella pulchra; trace N gas; soil respiration; diversity; resilience

向作者/读者索取更多资源

Rainfall in Mediterranean climates may affect soil microbial processes and communities differently in agricultural vs. grassland soils. We explored the hypothesis that land use intensification decreases the resistance of microbial community composition and activity to perturbation. Soil carbon (C) and nitrogen (N) dynamics and microbial responses to a simulated Spring rainfall were measured in grassland and agricultural ecosystems. The California ecosystems consisted of two paired sets: annual vegetable crops and annual grassland in Salinas Valley, and perennial grass agriculture and native perennial grassland in Carmel Valley. Soil types of the respective ecosystem pairs were derived from granitic parent material and had sandy loam textures. Intact cores (30 cm deep) were collected in March 1999. After equilibration, dry soil cores (approx. -1 to -2 MPa) were exposed to a simulated Spring rainfall of 2.4 cm, and then were measured at 0, 6, 24, and 120 h after rewetting. Microbial biomass C (MBC) and inorganic N did not respond to rewetting. N2O and CO2 efflux and respiration increased after rewetting in all soils, with larger responses in the grassland than in the agricultural soils. Phospholipid fatty acid (PLFA) profiles indicated that changes in microbial community composition after rewetting were most pronounced in intensive vegetable production, followed by the relict perennial grassland. Changes in specific PLFA markers were not consistent across all sites. There were more similarities among microbial groups associated with PLFA markers in agricultural ecosystems than grassland ecosystems. Differences in responses of microbial communities may be related to the different plant species composition of the grasslands. Agricultural intensification appeared to decrease microbial diversity, as estimated from numbers of individual PLFA identified for each ecosystem, and reduce resistance to change in microbial community composition after rewetting. In the agricultural systems, reductions in both the measures of microbial diversity and the resistance of the microbial community composition to change after a perturbation were associated with lower ecosystem function, i.e. lower microbial responses to increased moisture availability. (c) 2005 Elsevier Ltd. All fights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据