4.8 Article

Solution-processed zinc oxide field-effect transistors based on self-assembly of colloidal nanorods

向作者/读者索取更多资源

Colloidal zinc oxide (ZnO) nanocrystals are attractive candidates for a low-temperature and solution-processible semiconductor for high-performance thin-film field-effect transistors (TFTs). Here we show that by controlling the shape of the nanocrystals from spheres to rods the semiconducting properties of spin-coated ZnO films can be much improved as a result of increasing particle size and self-alignment of the nanorods along the substrate. Postdeposition hydrothermal growth in an aqueous zinc ion solution has been found to further enhance grain size and connectivity and improve device performance. TFT devices made from 65-nm-long and 10-nm-wide nanorods deposited by spin coating have been fabricated at moderate temperatures of 230 degrees C with mobilities of 0.61 cm(2)V(-1)s(-1) and on/off ratios of 3 X 10(5) after postdeposition growth, which is comparable to the characteristics of TFTs fabricated by traditional sputtering methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据