4.5 Article

Screening and optimization of protein crystallization conditions through gradual evaporation using a novel crystallization platform

期刊

JOURNAL OF APPLIED CRYSTALLOGRAPHY
卷 38, 期 -, 页码 988-995

出版社

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S0021889805031572

关键词

-

向作者/读者索取更多资源

High-throughput screening of a wide range of different conditions is typically required to obtain X-ray quality crystals of proteins for structure-function studies. The outcomes of individual experiments, i.e. the formation of gels, precipitates, microcrystals, or crystals, guide the search for and optimization of conditions resulting in X-ray diffraction quality crystals. Unfortunately, the protein will remain soluble in a large fraction of the experiments. In this paper, an evaporation-based crystallization platform is reported in which droplets containing protein and precipitant are gradually concentrated through evaporation of solvent until the solvent is completely evaporated. A phase transition is thus ensured for each individual crystallization compartment; hence the number of experiments and the amount of precious protein needed to identify suitable crystallization conditions is reduced. The evaporation-based method also allows for rapid screening of different rates of supersaturation, a parameter known to be important for optimization of crystal growth and quality. The successful implementation of this evaporation-based crystallization platform for identification and especially optimization of crystallization conditions is demonstrated using the model proteins of lysozyme and thaumatin.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据