4.6 Article

Simulation results for an interacting pair of resistively shunted Josephson junctions

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1742-5468/2005/12/P12003

关键词

dissipative systems (theory); quantum Monte Carlo simulations; quantum phase transitions (theory)

向作者/读者索取更多资源

Using a new cluster Monte Carlo algorithm, we study the phase diagram and critical properties of an interacting pair of resistively shunted Josephson junctions. This system models tunnelling between two electrodes through a small superconducting grain, and is described by a double sine-Gordon model. In accordance with theoretical predictions, we observe three different phases and crossover effects arising from an intermediate coupling fixed point. On the superconductor-to-metal phase boundary, the observed critical behaviour is within error-bars the same as in a single junction, with identical values of the critical resistance and a correlation function exponent which depends only on the strength of the Josephson coupling. We explain these critical properties on the basis of a renormalization group (RG) calculation. In addition, we propose an alternative new mean-field theory for this transition, which correctly predicts the location of the phase boundary at intermediate Josephson coupling strength.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据