4.4 Article

A patient-specific computational model of fluid-structure interaction in abdominal aortic aneurysms

期刊

MEDICAL ENGINEERING & PHYSICS
卷 27, 期 10, 页码 871-883

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.medengphy.2005.06.008

关键词

abdominal aortic aneurysm; patient-specific mesh; computational fluid dynamics; fluid-structure interaction; wall stress; wall shear stress

向作者/读者索取更多资源

It is generally believed that knowledge of the wall stress distribution could help to find better rupture risk predictors of abdominal aortic aneurysms (AAAs). Although AAA wall stress results from combined action between blood, wall and intraluminal thrombus, previously published models for patient-specific assessment of the wall stress predominantly did not include fluid-dynamic effects. In order to facilitate the incorporation of fluid-structure interaction in the assessment of AAA wall stress, in this paper, a method for generating patient-specific hexahedral finite element meshes of the AAA lumen and wall is presented. The applicability of the meshes is illustrated by simulations of the wall stress, blood velocity distribution and wall shear stress in a characteristic AAA. The presented method yields a flexible, semi-automated approach for generating patient-specific hexahedral meshes of the AAA lumen and wall with predefined element distributions. The combined fluid/solid mesh allows for simulations of AAA blood dynamics and AAA wall mechanics and the interaction between the two. The mechanical quantities computed in these simulations need to be validated in a clinical setting, after which they could be included in clinical trials in search of risk factors for AAA rupture. 2005 IPEM. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据