4.4 Article

Coexpression patterns of σB regulators in Bacillus subtilis affect σB inducibility

期刊

JOURNAL OF BACTERIOLOGY
卷 187, 期 24, 页码 8520-8525

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.187.24.8520-8525.2005

关键词

-

资金

  1. NIGMS NIH HHS [GM-48220, R01 GM048220] Funding Source: Medline

向作者/读者索取更多资源

RsbT is an essential component of the pathway that activates the Bacillus subtilis sigma(B) transcription factor in response to physical stress. rsbT is located within an operon that includes the genes for its principal negative regulator (RsbS) and the stress pathway component that it activates (RsbU), as immediate upstream and downstream neighbors. In the current work we demonstrate that RsbT's ability to function is strongly influenced by coexpression with these adjoining genes. When rsbT is expressed at a site displaced from rsbS and rsbU, RsbT accumulates but it is unable to activate sigma(B) following stress. RsbT activity is restored if rsbT is cotranscribed at the alternative site with the genes that normally abut it. Additionally, an rsbS allele whose product allows constitutively high RsbT-dependent sigma(B) activity displays this activity in rsbS merodiploid strains only when cotranscribed with rsbT and is recessive to a wild-type rsbS allele only if the wild-type rsbS gene is not cotranscribed with an rsbT gene of its own. The data suggest that RsbS and RsbT are synthesized in equivalent amounts and interact coincidently with their synthesis to form stable regulatory complexes that maintain RsbT in a state from which it can be stress activated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据