4.7 Article

A size effect in grain boundary migration: A molecular dynamics study of bicrystal thin films

期刊

ACTA MATERIALIA
卷 53, 期 20, 页码 5273-5279

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.actamat.2005.07.032

关键词

grain boundary migration; thin films; nanostructure molecular dynamics

向作者/读者索取更多资源

Molecular dynamics simulations of stress-driven grain boundary migration in bicrystal thin films demonstrate that the grain boundary mobility decreases as the films are made thinner. Examination of the surface morphology proves that this effect is not associated with grain boundary grooving. The simulation data demonstrate that the grain boundary mobility is a linear function of the inverse thickness. We present a simple model to explain this effect based upon the fundamental mechanism of grain boundary migration: the collective rearrangement of a large group of atoms. Decreasing system size implies that more of the boundary is near the surface. The presence of the free surface interferes with the collective rearrangement of the atoms during boundary motion and hence slows the migration. A simple heuristic analysis, based on this effect, is consistent with the observed functional dependence of boundary mobility on bicrystal thickness. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据