4.8 Article Proceedings Paper

Stability of bovine serum albumin complexed with PEG-poly(L-histidine) diblock copolymer in PLGA microspheres

期刊

JOURNAL OF CONTROLLED RELEASE
卷 109, 期 1-3, 页码 86-100

出版社

ELSEVIER
DOI: 10.1016/j.jconrel.2005.09.016

关键词

PEG-poly(histidine) diblock copolymer; protein stability; poly(lactic-co -glycolic acid) [PLGA]; acidic microenvironment; buffering capacity

向作者/读者索取更多资源

The aim of this study was to examine the stability of bovine serum albumin (BSA) in poly(DL-lactic acid-co-glycolic acid) (PLGA) microspheres upon addition of a new excipient, poly(ethylene glycol)-poly(L-histidine) diblock copolymer (PEG-PH). Poly(L-histidine) component can form an ionic complex with BSA under acidic conditions within a narrow pH range. To optimize the ionic complexation conditions for BSA with PEG-PH, the resulting complex sizes were monitored using the Zetasizer. PLGA microspheres containing BSA as a model protein were prepared by w/o/w double emulsion method. BSA stability in aqueous solutions and after release from PLGA microspheres was determined using circular dichroism, (CD) spectroscopy for secondary structure analyses and fluorescence measurements for tertiary structure analyses. The release profile of BSA from the microspheres was monitored using UV spectrophotometry. The rate of PLGA degradation was monitored by gel permeation chromatography. The pH profile within microspheres was further evaluated by confocal microscopy using a pH-sensitive dye. Approximately 19 PEG-PH molecules and one BSA molecule coalesced to form an ionic complex around a pH range of 5.0-6.0. Plain BSA/PLGA and BSA/PEG-PH/PLGA microspheres had a mean size of 27-35 mu m. PLGA microspheres with a BSA loading efficiency > 80% were prepared using the double emulsion method. PEG-PH significantly improved the stability of BSA both in aqueous solutions and in PLGA microspheres. The release profiles of BSA from different formulations of PLGA microspheres were significantly different. PEG-PH effectively buffered the local acidity inside the microspheres and improved BSA release kinetics by reducing initial burst release and extending continuous release over a period of time, when encapsulated as an ionic complex. PLGA degradation rate was found to be delayed by PEG-PH. There was clear evidence that PEG-PH played multiple roles when complexed with BSA and incorporated into PLGA microspheres. PEG-PH is an effective excipient for preserving the structural stability of BSA in aqueous solution and BSA/PLGA microspheres formulation. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据