4.7 Article Proceedings Paper

Ensemble energy average and energy flow relationships for nonstationary vibrating systems

期刊

JOURNAL OF SOUND AND VIBRATION
卷 288, 期 3, 页码 751-790

出版社

ACADEMIC PRESS LTD ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jsv.2005.07.015

关键词

-

向作者/读者索取更多资源

This paper attempts to introduce a new point of view on energy analysis in structural dynamics with particular emphasis to its link with uncertainty and complexity. A linear, elastic system undergoing free vibrations, is considered. The system is subdivided into two subsystems and their respective energies together with the shared energy flow are analysed. First, the ensemble energy average of the two subsystems, assuming uncertain the natural frequencies, is investigated. It is shown how the energy averages follow a simple law when observing the long-term response of the system, obtained by a suitable asymptotic expansion. The second part of the analysis shows how the ensemble energy average of a set of random samples is representative even of the single case if the system is complex enough. The two previous points, combined, produce a result that applies to the energy sharing between two subsystems even independently of uncertainty: for complex systems, a simple energy sharing law is indeed stated. Moreover, in the case of absence of damping, a nonlinear relation between the energy flow and the energy (weighted) difference between the two subsystems is derived; on the other hand, when damping is present, this relationship becomes linear, including two terms: one is proportional to the energy (weighted) difference between the two subsystems, the other being proportional to its time derivative. Therefore, the approach suggests a way for deriving a general approach to energy sharing in vibration with results that, in some cases, are reminiscent of those met in Statistical Energy Analysis. Finally, computational experiments, performed on systems of increasing complexity, validate the theoretical results. (c) 2005 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据