4.8 Article

Kinetically controlled synthesis of triangular and hexagonal nanoplates of palladium and their SPR/SERS properties

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 127, 期 48, 页码 17118-17127

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja056498s

关键词

-

向作者/读者索取更多资源

The rapid reduction of Na2PdCl4 by ethylene glycol in the presence of poly(vinyl pyrrolidone) (PVP) has recently been demonstrated as a convenient method of generating Pd cubooctahedra and twinned nanoparticles. Here we describe a new procedure where Pd triangular or hexagonal nanoplates could be selectively synthesized by manipulating the reduction kinetics of the polyol process. More specifically, the reduction rate was substantially reduced through the introduction of Fe(Ill) species and the O-2/Cl- pair, two wet etchants for Pd(0). The etching power of the O-2/Cl- pair could be further enhanced by adding an acid to lower the pH of the reaction solution. Unlike the previously reported synthesis of Ag and Au nanoplates, light was found to have no indispensable role in the formation of Pd nanoplates. Both triangular and hexagonal nanoplates of Pd exhibited surface plasmon resonance (SPR) peaks in the visible region, and their positions matched with the results of discrete dipole approximation (DDA) calculation. Thanks to their sharp corners and edges, these Pd nanoplates could serve as active substrates for surface-enhanced Raman scattering (SERS).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据