4.8 Review

The fate of dicationic states in molecular clusters of benzene and related compounds

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 127, 期 48, 页码 16824-16834

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja042238j

关键词

-

向作者/读者索取更多资源

Calculations employing density functional theory indicate that, rather than undergoing fragmentation, dicationic clusters of benzene, hexafluorobenzene, and naphthalene produced by sequential one-electron or sudden double-ionization experiments on the neutrals can relax via the formation of inter-ring covalent C-C bonds, along with a series of proton transfers that enable a substantial reduction of inter-and intramolecular Coulomb repulsions. The theoretically predicted chemically bound structures correspond to deep local energy minima on the potential energy surface pertaining to the lowest electronic state of the dications and can therefore be regarded as metastable (kinetically long-lived) species. This discovery invalidates on theoretical grounds the liquid-droplet model of multiply charged clusters and sheds very unexpected light on possible consequences in chemistry of the intermolecular Coulombic decay (ICD) mechanism [Cederbaum, L. S.; et al. Phys. Rev. Lett. 1997, 79, 4778; Jahnke, T.; et al. Phys. Rev. Lett. 2004, 93, 1634011 for deep inner-valence ionized states. Propagation of charge rearrangement reactions and proton transfers to several monomers may eventually lead to the formation of rather extended dicationic assemblies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据