4.7 Article Proceedings Paper

Hydrogen storage properties in Ti catalyzed Li-N-H system

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 404, 期 -, 页码 435-438

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2004.11.110

关键词

hydrogen storage materials; nanostructures; gas-solid reactions; high-energy ball milling; thermal analysis

向作者/读者索取更多资源

The Li-N-H system expressed by LiNH2 + LiH <-> Li2NH + H-2 can be expected as a promising candidate for the hydrogen storage materials because of possessing a large amount of reversible hydrogen (6.5 wt.%), a satisfactorily fast kinetics and a relatively small enthalpy change. In this work, we investigated the hydrogen storage properties of the Li-N-H system from three different points of view. Firstly, we claim that the ball milled 1: 1 mixture of lithium amide (LiNH2) and lithium hydride (LiH) containing a small amount (I mol %) of titanium chloride (TiCl3) shows superior hydrogen storage properties; a large amount of H-2 gas desorbs in the temperature range from 150 to 250 degrees C at a heating rate of 5 degrees C/n-dn and it reveals an excellent reversibility. Secondly, we clarify that the above hydrogen desorption reaction is composed of two kinds of elementary reactions: The one is that 2LiNH(2) decomposes to Li2NH and emits ammonia (NH3). The other is that the emitted NH3 reacts with LiH and transforms into LiNH2 and H-2, indicating that NH3 plays an important role on this H-2 desorption reaction. Finally, we examined the reaction of LiH and LiOH to clarify the influence of exposing the product to air. This is because due to the fact that LiOH is easily produced by exposing LiH and LiNH2 to air. The reaction between LiH and LiOH indicated better kinetics but worse durability and an extra H2 desorption due to transforming into Li2O. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据