4.5 Article

MD simulation of the Na+-phenylalanine complex in water:: Competition between cation-π interaction and aqueous solvation

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 109, 期 48, 页码 23016-23023

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp055271g

关键词

-

向作者/读者索取更多资源

The competition between cation-pi interaction and aqueous solvation for the Na+ ion has been investigated by molecular dynamics simulations, using the phenylalanine amino acid as the test pi system. Starting from one of the best standard force fields, we have developed new parameters that significantly improve the agreement with experimental and high quality quantum mechanical results for the complexes of Nal with phenylalanine, benzene, and water. The modified force field performs very well in forecasting energy and geometry of cation coordination for the complexes. Next, analysis of MD trajectories and steered MD simulations indicate that the Na+-phenylalanine complex survives for a significant time in aqueous solution and that the free energy barrier opposing dissociation of the complex is sizable. Finally, we analyze the role of different intermolecular interactions in determining the preference for cation-pi bonding with respect to aqueous solvation. We thus confirm that the Na+-phenylalanine stabilization energy may overcome the interactions with water.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据