4.6 Article

Nitrogen fixation under mild ambient conditions: Part I - The initial dissociation/association step at molybdenum triamidoamine complexes

期刊

CHEMISTRY-A EUROPEAN JOURNAL
卷 11, 期 24, 页码 7448-7460

出版社

WILEY-BLACKWELL
DOI: 10.1002/chem.200500935

关键词

density functional calculations; molybdenum; nitrogen fixation

向作者/读者索取更多资源

In several recent studies Schrock and collaborators demonstrated for the first time how molecular dinitrogen can be catalytically transformed under mild and ambient conditions to ammonia by a molybdenum triamidoamine complex. In this work, we investigate the geometrical and electronic structures involved in this process of dinitrogen activation with quantum chemical methods. Density functional theory (DFT) has been employed to calculate the coordination energies of ammonia and dinitrogen relevant for the dissociation/association step in which ammonia is substituted by dinitrogen. In the DFT calculations the triamidoamine chelate ligand has been modeled by a systematic hierarchy of increasingly complex substituents at the amide nitrogen atoms. The most complex ligand considered is an experimentally known ligand with an HMT=3,5-(2,4,6-Me3C6H2)(2)C6H3 substituent. Several assumptions by Schrock and collaborators on key reaction steps are confirmed by our calculations. Additional information is provided on many species not yet observed experimentally. Particular attention is paid to the role of the charge of the complexes. The investigation demonstrates that dinitrogen coordination is enhanced for the negatively charged metal fragment, that is, coordination is more favorable for the anionic metal fragment than for the neutral species. Coordination of N-2 is least favorable for the cationic metal fragment. Furthermore, ammonia abstraction from the cationic complex is energetically unfavorable, while NH3 abstraction is less difficult from the neutral and easily feasible from the anionic low-spin complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据