4.6 Article

Isolation of a calmodulin-binding transcription factor from rice (Oryza sativa L.)

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 49, 页码 40820-40831

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M504616200

关键词

-

向作者/读者索取更多资源

Calmodulin (CaM) regulates diverse cellular functions by modulating the activities of a variety of enzymes and proteins. However, direct modulation of transcription factors by CaM has been poorly understood. In this study, we isolated a putative transcription factor by screening a rice cDNA expression library by using CaM: horseradish peroxidase as a probe. This factor, which we have designated OsCBT (Oryza sativa CaM- binding transcription factor), has structural features similar to Arabidopsis AtSRs/AtCAMTAs and encodes a 103-kDa protein because it contains a CG-1 homology DNA-binding domain, three ankyrin repeats, a putative transcriptional activation domain, and five putative CaM- binding motifs. By using a gel overlay assay, gel mobility shift assays, and site- directed mutagenesis, we showed that OsCBT has two different types of functional CaM- binding domains, an IQ motif, and a Ca2+-dependent motif. To determine the DNA binding specificity of OsCBT, we employed a random binding site selection method. This analysis showed that OsCBT preferentially binds to the sequence 5'-TWCG(C/T) GTKKKKTKCG-3' (W and K represent A or C and T or G, respectively). OsCBT was able to bind this sequence and activate beta-glucuronidase reporter gene expression driven by a minimal promoter containing tandem repeats of these sequences in Arabidopsis leaf protoplasts. Green fluorescent protein fusions of two putative nuclear localization signals of OsCBT, a bipartite and a SV40 type, were predominantly localized in the nucleus. Most interestingly, the transcriptional activation mediated by OsCBT was inhibited by co-transfection with a CaM gene. Taken together, our results suggest that OsCBT is a transcription activator modulated by CaM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据