4.7 Article

Warm-hot gas in and around the Milky Way: Detection and implications of OVII absorption toward LMC X-3

期刊

ASTROPHYSICAL JOURNAL
卷 635, 期 1, 页码 386-395

出版社

IOP PUBLISHING LTD
DOI: 10.1086/497584

关键词

intergalactic medium; ISM : kinematics and dynamics; stars : individual (LMC X-3); techniques : spectroscopic; ultraviolet : ISM; X-rays : ISM

向作者/读者索取更多资源

X-ray absorption lines of highly ionized species such as O VII at about zero redshift have been firmly detected in the spectra of several active galactic nuclei. However, the location of the absorbing gas remains a subject of debate. To separate the Galactic and extragalactic contributions to the absorption, we have obtained Chandra LETG-HRC and Far Ultraviolet Spectroscopic Explorer observations of the black hole X-ray binary LMC X-3. We clearly detect the O VII K alpha absorption line with an equivalent width of 20(14, 26) m angstrom (90% confidence range). The Ne IX K alpha absorption line is also detected, albeit marginally. A joint analysis of these lines, together with the nondetection of the O VII K beta and O VIII K alpha lines, gives the temperature, velocity dispersion, and hot oxygen column density as 1.3(0.7, 1.8); 10(6) K, 79(62,132) km s(-1), and 1.9(1.2, 3.2) x 10(16) cm(-2), assuming a collisional ionization equilibrium of the X-ray-absorbing gas and a Galactic interstellar Ne/O number ratio of 0.18. The X-ray data allow us to place a 95% confidence lower limit to the Ne/O ratio as 0.14, but the upper limit is not meaningfully constrained. The O VII line centroid and its relative shift from the Galactic O I K alpha absorption line, detected in the same observations, are inconsistent with the systemic velocity of LMC X-3 (+310 km s(-1)). The far-UV spectrum shows O VI absorption at Galactic velocities, but no O VI absorption is detected at the LMC velocity at greater than 3 sigma significance. The measured Galactic O VI column density is higher than the value predicted from the O VII-bearing gas, indicating multiphase absorption. Both the nonthermal broadening and the decreasing scale height with the increasing ionization state further suggest an origin of the highly ionized gas in a supernova-driven galactic fountain. In addition, we estimate the warm and hot electron column densities from our detected O II K alpha line in the LMC X-3 X-ray spectra and from the dispersion measure of a pulsar in the LMC vicinity. We then infer the O/H ratio of the gas to greater than or similar to 8 x 10(-5), consistent with the chemically enriched galactic fountain scenario. We conclude that the Galactic hot interstellar medium should in general substantially contribute to zero-redshift X-ray absorption lines in extragalactic sources.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据