4.7 Article

Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results

期刊

JOURNAL OF HYDROLOGY
卷 315, 期 1-4, 页码 126-153

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2005.03.026

关键词

spatial interpolation; meteorological variables; snowmelt; energy balance; spatially distributed hydrologic modelling

向作者/读者索取更多资源

A spatially distributed energy balance snowmelt model has been applied to a 2150 km(2) drainage basin in the Boise River, ID, USA, to simulate the accumulation and melt of the snowpack for the years 1998-2000. The simulation was run at a 3 h time step and a spatial resolution of 250 m. Spatial field time series of meteorological input data were obtained using various spatial interpolation and simulation methods. The variables include precipitation, air temperature, dew point temperature, wind speed, and solar and thermal radiation. The goal was to use readily available data and relatively straightforward, yet physically meaningful, methods to develop the spatial fields. With these meteorological fields as input, the simulated fields of snow water equivalent, snow depth, and snow covered area reproduce observations very well. The simulated snowmelt fields are also used as input to a spatially distributed hydrologic model to estimate streamflow. This gives an additional verification of the snowmelt modelling results as well as provides a linkage of the two models to generate hydrographs for water management information. This project is a demonstration of spatially distributed energy balance snowmelt modelling in a large mountainous catchment using data from existing meteorological networks. This capability then suggests the potential for developing new spatial hydrologic informational products and the possibility of improving the accuracy of the prediction of hydrologic processes for water and natural resources management. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据