4.8 Article

Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-lon batteries

期刊

CHEMISTRY OF MATERIALS
卷 17, 期 25, 页码 6327-6337

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm051574b

关键词

-

向作者/读者索取更多资源

We report the electrochemical study of cubic and monoclinic NiP2 polymorphs toward Li, as a candidate for anodic applications for Li-ion batteries. We found that the monoclinic form is the most attractive one performance-wise. Monoclinic NiP2 can reversibly uptake 5 lithium per formula unit, leading to reversible capacities of 1000 mAh/g at an average potential of 0.9 V vs Li+/Li degrees. From complementary X-ray diffraction (XRD) and HRTEM (high-resolution transmission electron microscopy) measurements, it was shown that, during the first discharge, the cubic phase undergoes a pure conversion process (NiP2 + 6 Li+ + 6e(-) -> Ni degrees + 2Li(3)P) as opposed to a sequential insertion-conversion process for monoclinic NiP2. Such a different behavior rooted in subtle structural changes was explained through electronic structure calculations. Once the first discharged is achieved, both phases were shown to react with Li through a classical conversion process. More importantly, we report a novel way to design NiP2 electrodes with enhanced capacity retention and rate capabilities. It consists in growing the monoclinic NiP2 phase, through a vapor-phase transport process, on a commercial Ni-foam commonly used in Ni-based alkaline batteries. These new self-supported electrodes, based on chemically made interfaces, offer new opportunities to fully exploit the capacity gains provided by conversion reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据