4.8 Article

Interaction force profiles between Cryptosporidium parvum oocysts and silica surfaces

期刊

ENVIRONMENTAL SCIENCE & TECHNOLOGY
卷 39, 期 24, 页码 9574-9582

出版社

AMER CHEMICAL SOC
DOI: 10.1021/es051231e

关键词

-

向作者/读者索取更多资源

The interaction force profile between single Cryptosporidium parvum oocysts and silica particles was measured in aqueous solutions using an atomic force microscope. The oocysts were immobilized during the measurements by entrapment in Millipore polycarbonate membranes with a 3 mu m pore size. Experiments were performed in both NO and CaCl2 solutions at ionic strengths ranging from 1 to 100 mM. For both electrolytes the decay length of the repulsive force profile, obtained via the slope of a plot of the logarithm of interaction force versus separation, was found to be essentially independent of the ionic strength and always much larger than the theoretical Debye length of the system. In addition, the magnitude of the force was found to be essentially the same for both electrolytes, suggesting that the long-range repulsive forces are primarily steric in nature. Fitting the force to an expression for the steric repulsive force between two grafted brush layers yields a layer thickness of approximately 115 nm. These results support the idea that the oocysts are covered by a relatively thick layer of uncharged (or weakly charged) carbohydrates, possibly mixed with a thinner layer of charged protein.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据