4.7 Article

Dielectric and shear mechanical alpha and beta relaxations in seven glass-forming liquids

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 123, 期 23, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2136887

关键词

-

向作者/读者索取更多资源

We present shear mechanical and dielectric measurements taken on seven liquids: triphenylethylene, tetramethyltetra-phenyltrisiloxane (Dow Corning 704 (R) diffusion pump fluid), polyphenyl ether (Santovac (R) 5 vacuum pump fluid), perhydrosqualene, polybutadiene, decahydroisoquinoline (DHIQ), and tripropylene glycol. The shear mechanical and dielectric measurements are for each liquid performed under identical thermal conditions close to the glass transition temperature. The liquids span four orders of magnitude in dielectric relaxation strength and include liquids with and without Johari-Goldstein beta relaxation. The shear mechanical data are obtained by the piezoelectric shear modulus gauge method giving a large frequency span (10(-3)-10(4.5) Hz). This allows us to resolve the shear mechanical Johari-Goldstein beta peak in the equilibrium DHIQ liquid. We moreover report a signature (a pronounced rise in the shear mechanical loss at frequencies above the alpha relaxation) of a Johari-Goldstein beta relaxation in the shear mechanical spectra for all the liquids which show a beta relaxation in the dielectric spectrum. It is found that both the alpha and beta loss peaks are shifted to higher frequencies in the shear mechanical spectrum compared to the dielectric spectrum. It is in both the shear and dielectric responses found that liquids obeying time-temperature superposition also have a high-frequency power law with exponent close to -1/2. It is moreover seen that the less temperature dependent the spectral shape is, the closer it is to the universal -1/2 power-law behavior. The deviation from this universal power-law behavior and the temperature dependencies of the spectral shape are rationalized as coming from interactions between the alpha and beta relaxations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据