4.6 Article

Incorporating spatial dependence into a multicellular tumor spheroid growth model

期刊

JOURNAL OF APPLIED PHYSICS
卷 98, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2146073

关键词

-

向作者/读者索取更多资源

Recent models for organism and tumor growth yield simple scaling laws based on conservation of energy. Here, we extend such a model to include spatial dependence to model necrotic core formation. We adopt the allometric equation for tumor volume with a reaction-diffusion equation for nutrient concentration. In addition, we assume that the total metabolic energy and average cellular metabolic rate depend on nutrient concentration in a Michaelis-Menten-like manner. From experimental results, we relate the necrotic volume to nutrient consumption and estimate both the time and nutrient concentration at necrotic core formation. Based on experimental results, we demand that the necrotic core radius varies linearly with tumor radius after core formation and extend the equations for tumor volume and nutrient concentration to the postnecrotic core regime. In particular, we obtain excellent agreement with experimental data and the final steady-state viable rim thickness. (c) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据