4.7 Article

Relative importance of fluvial input and wave energy in controlling the timescale for distributary-channel avulsion

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 32, 期 23, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2005GL024758

关键词

-

向作者/读者索取更多资源

Existing avulsion models are decoupled from nearshore processes. Here, I explore quantitatively how the interplay of wave energy with fluvial input of sediment and water controls the aggradation rate and avulsion timescale of a single distributary channel. My approach rigorously couples a diffusive, moving-boundary theory of fluvial morphodynamics with a diffusive treatment of shoreface morphodynamics. I use this deterministic model to quantify the time required for channel-belt superelevation, normalized with channel depth, to attain a threshold value for nodal avulsion at a specified channel location. Increasing the long-term wave energy relative to fluvial input by an order of magnitude increases longshore sediment dispersal, thereby reducing the rate of channel-belt aggradation and associated seaward extension and increasing the avulsion timescale by a factor of approximately 50. Far-field processes eventually limit the ability of wave energy to suppress avulsion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据