4.6 Article

Spatial decoherence induced by small-world connectivity in excitable media

期刊

NEW JOURNAL OF PHYSICS
卷 7, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/7/1/252

关键词

-

向作者/读者索取更多资源

We study effects of different network topologies on the noise-induced pattern formation in a two-dimensional model of excitable media with FitzHugh-Nagumo local dynamics. In particular, we show that the introduction of long-range couplings induces decoherence of otherwise coherent noise-induced spatial patterns that can be observed by regular connectivity of spatial units. Importantly, already a small fraction of long-range couplings is sufficient to destroy coherent pattern formation. We argue that the small-world network topology destroys spatial order due to the lack of a precise internal spatial scale, which by regular connectivity is given by the coupling constant and the noise robust excursion time that is characteristic for the local dynamics. Additionally, the importance of spatially versus temporally ordered neural network functioning is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据