4.7 Article Proceedings Paper

Automated portable analyzer for lead(II) based on sequential flow injection and nanostructured electrochemical sensors

期刊

TALANTA
卷 68, 期 2, 页码 256-261

出版社

ELSEVIER
DOI: 10.1016/j.talanta.2005.07.013

关键词

automated portable analyzer; sequential flow injection; nanostructured electrochemical sensors

向作者/读者索取更多资源

A fully automated portable analyzer for toxic metal ion detection based on a combination of a nanostructured electrochemical sensor and a sequential flow injection system has been developed in this work. The sensor was fabricated from a carbon paste electrode modified with acetamide phosphonic acid self-assembled monolayer on mesoporous silica (Ac-Phos SAMMS) which was embedded in a very small wall-jet (flow-onto) electrochemical cell. The electrode is solid-state and mercury-free. Samples and reagents were injected into the system and flowed through the electrochemical cell by a user programmable sequential flow technique which required minimal volume of samples and reagents and allowed the automation of the analyzer operation. The portable analyzer was evaluated for lead (Pb) detection due to the excellent binding affinity between Pb and the functional groups of Ac-Phos SAMMS as well as the great concern for Pb toxicity. Linear calibration curve was obtained in a low concentration range (1-25 ppb of Pb(11)). The reproducibility was excellent; the percent relative standard deviation was 2.5 for seven consecutive measurements of 10 ppb of Pb(II) solution. Excess concentrations of Ca, Ni, Co, Zn, and Mn ions in the solutions did not interfere with detection of Pb, due to the specificity and the large number of the functional groups on the electrode surface. The electrode was reliable for at least 90 measurements over 5 days. This work is an important milestone in the development of the next-generation metal ion analyzers that are portable, fully automated, and remotely controllable. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据