4.5 Article

Modulation of excitatory synaptic transmission by endogenous glutamate acting on presynaptic group II mGluRs in rat substantia nigra compacta

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 82, 期 6, 页码 778-787

出版社

WILEY
DOI: 10.1002/jnr.20694

关键词

glutamate receptor; presynaptic inhibition; basal ganglia

资金

  1. NINDS NIH HHS [NS-26473, NS-20702] Funding Source: Medline

向作者/读者索取更多资源

Excitatory synaptic inputs from the subthalamic nucleus (STN) have been proposed to underlie burst firing of substantia nigra pars compacta (SNc) dopamine (DA) neurons in Parkinson's disease. Given the potential importance of the STN-SNc synapse in health and disease, our goal was to study how transmission at this synapse is regulated. We tested the hypothesis that neurotransmission at STN-SNc synapses is tonically inhibited by endogenous glutamate acting on presynaptic group 11 metabotropic glutamate receptors (mGluRs). By using whole-cell recording techniques in brain slices, we examined the effect of LY341495, a mGluR antagonist that is most potent at group 11 mGluRs, on excitatory postsynaptic currents (EPSCs) that either were evoked in SNc DA neurons by stimulation of the STN or were spontaneously occurred in the presence of tetrodotoxin (miniature EPSCs; mEPSCs). LY341495 increased the evoked EPSC amplitude and mEPSC frequency without changing mEPSC amplitude. In contrast, the group III mGluR antagonist UBP1112 failed to increase the evoked EPSC amplitude. An elevation of extracellular glutamate concentration by a glutamate transporter inhibitor, TBOA, suppressed the evoked EPSCs. LY341495, but not UBP1112, partially reversed the TBOA action. The modulations of EPSCs by TBOA and LY341495 were associated with changes in paired-pulse facilitation ratio. Furthermore, TBOA decreased mEPSC frequency, which was partially reversed by LY341495, without affecting mEPSC amplitude. The results indicate that presynaptic group 11 mGluRs at STN-SNc synapses appear to be partially activated by a basal level of extracellular glutamate and able to sense the change in extracellular glutamate concentration, subsequently modulating synaptic glutamate release. (c) 2005 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据