4.8 Article

Sequence determinants of a conformational switch in a protein structure

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0509349102

关键词

protein folding; secondary structure; structural evolution

资金

  1. NIAID NIH HHS [R01 AI015706, AI-15706, R37 AI015706] Funding Source: Medline

向作者/读者索取更多资源

The Arc repressor of bacteriophage P22 is a dimeric member of the ribbon-helix-helix family of transcription factors. Residues 9-14 of each wild-type Arc subunit pair to form two antiparallel beta-strands and have the alternating pattern of polar and nonpolar residues expected for a beta-ribbon with one solvent-exposed face and one face that forms part of the hydrophobic core. Simultaneously switching Asn-11 to Leu and Leu-12 to Asn changes the local binary sequence pattern to that of an amphipathic helix. Previous studies have shown that this double mutation results in replacement of the wild-type beta-ribbon by two right-handed 3(10)-helices. Moreover, an Arc variant bearing just the Asn-11 right arrow Leu mutation has an ambiguous binary pattern and can form either the ribbon or the helical structures, which interchange rapidly. Here, we study Arc mutants in which position 11 is occupied by Gly, Ala, Val, lie, Leu, Met, Phe, or Tyr. These mutants adopt the wild-type beta-ribbon structure in a sequence context that stabilizes this fold, but they assume the alternative helical structure in a sequence background in which the wild-type fold is precluded by negative design. In an otherwise wild-type sequence background, the detailed chemical properties of the position 11 side chain dictate which of the two competing conformational folds is preferred.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据