4.6 Article

Reversible inactivation of HIF-1 prolyl hydroxylases allows cell metabolism to control basal HIF-1

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 280, 期 51, 页码 41928-41939

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M508718200

关键词

-

资金

  1. NINDS NIH HHS [NS37814] Funding Source: Medline

向作者/读者索取更多资源

Continuous hydroxylation of the HIF-1 transcription factor alpha subunit by oxygen and 2-oxoglutarate-dependent dioxygenases promotes decay of this protein and thus prevents the transcriptional activation of many genes involved in energy metabolism, angiogenesis, cell survival, and matrix modification. Hypoxia blocks HIF-1 alpha hydroxylation and thus activates HIF-1 alpha-mediated gene expression. Several nonhypoxic stimuli can also activate HIF-1, although the mechanisms involved are not well known. Here we show that the glucose metabolites pyruvate and oxaloacetate inactivate HIF-1 alpha decay in a manner selectively reversible by ascorbate, cysteine, histidine, and ferrous iron but not by 2-oxoglutarate or oxygen. Pyruvate and oxaloacetate bind to the 2-oxoglutarate site of HIF-1 alpha prolyl hydroxylases, but their effects on HIF-1 are not mimicked by other Krebs cycle intermediates, including succinate and fumarate. We show that inactivation of HIF-1 hydroxylation by glucose-derived 2-oxoacids underlies the prominent basal HIF-1 activity commonly seen in many highly glycolytic cancer cells. Since HIF-1 itself promotes glycolytic metabolism, enhancement of HIF-1 by glucose metabolites may constitute a novel feed-forward signaling mechanism involved in malignant progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据