4.8 Article

Opioid-induced tolerance and dependence in mice is modulated by the distance between pharmacophores in a bivalent ligand series

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0506627102

关键词

antinociception; heterodimers

资金

  1. NIDA NIH HHS [DA18028, F32 DA018028, P01 DA015091, DA015091] Funding Source: Medline

向作者/读者索取更多资源

Given the mounting evidence for involvement of delta opioid receptors in the tolerance and physical dependence of mu opioid receptor agonists, we have investigated the possible physical interaction between mu and delta opioid receptors by using bivalent ligands. Based on reports of suppression of antinociceptive tolerance by the delta antagonist naltrindole (NTI), bivalent ligands [mu-delta agonist-antagonist (MDAN) series] that contain different length spacers, and pharmacophores derived from NTI and the mu agonist oxymorphone, have been synthesized and evaluated by intracerebroventricular (i.c.v.) administration in the tail-flick test in mice. In acute i.c.v. studies, the bivalent ligands functioned as agonists with potencies ranging from 1.6- to 45-fold greater than morphine. In contrast, the monovalent mu agonist analogues were substantially more potent than the MDAN congeners and were essentially equipotent with one another and oxymorphone. Pretreatment with NTI decreased the ED50 values for MDAN-19 to a greater degree than for MDAN-16 but had no effect on MDAN-21. Chronic i.c.v. studies revealed that MDAN ligands whose spacer was 16 atoms or longer produced less dependence than either morphine or mu monovalent control MA-19. On the other hand, both physical dependence and tolerance were suppressed at MDAN spacer lengths of 19 atoms or greater. These data suggest that physical interaction between the mu and delta opioid receptors modulates mu-mediated tolerance and dependence. Because MDAN-21 was found to be 50-fold more potent than morphine by the i.v. route (i.v.), it offers a previously uncharacterized approach for the development of analgesics devoid of tolerance and dependence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据