4.6 Article

Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control

期刊

BIOTECHNOLOGY AND BIOENGINEERING
卷 92, 期 7, 页码 920-933

出版社

WILEY
DOI: 10.1002/bit.20668

关键词

embryonic stem cells; embryoid bodies; cardiomyocytes; bioreactor agitation; process control; scale-up

向作者/读者索取更多资源

It is well established that embryonic stem (ES) cells can differentiate into functional cardiomyocytes in vitro. ES-derived cardiomyocytes could be used for pharmaceutical and therapeutic applications, provided that they can be generated in sufficient quantity and with sufficient purity. To enable large-scale culture of ES-derived cells, we have developed a robust and scalable bioprocess that allows direct embryoid body (EB) formation in a fully controlled, stirred 2 L bioreactor following inoculation with a single cell suspension of mouse ES cells. Utilizing a pitched-blade-turbine, parameters for optimal cell expansion as well as efficient ES cell differentiation were established. Optimization of stirring conditions resulted in the generation of high-density suspension cultures containing 12.5 x 10(6) cells/mL after 9 days of differentiation. Approximately 30%-40% of the EBs formed in this process vigorously contracted, indicating robust cardiomyogenic induction. An ES cell clone carrying a recombinant DNA molecule comprised of the cardiomyocyte-restricted alpha myosin heavy chain (alpha MHC) promoter and a neomycin resistance gene was used to establish the utility of this bioprocess to efficiently generate ES-derived cardiomyocytes. The genetically engineered ES cells were cultured directly in the stirred bioreactor for 9 days, followed by antibiotic treatment for another 9 days. The protocol resulted in the generation of essentially pure cardiomyocyte cultures, with a total yield of 1.28 x 10(9) cells in a single 2 L bioreactor run. This study thus provides an important step towards the large-scale generation of ES-derived cells for therapeutic and industrial applications. (c) 2005 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据