4.3 Article Proceedings Paper

Advances in the structural biology, design and clinical development of Bcr-Abl kinase inhibitors for the treatment of chronic myeloid leukaemia

期刊

出版社

ELSEVIER
DOI: 10.1016/j.bbapap.2005.07.040

关键词

Bcr-Abl; chronic myeloid leukaernia; protein kinase inhibitor; crystal structure; AMN107; BMS-354825; AZD0530

向作者/读者索取更多资源

The constitutively activated Abl tyrosine kinase domain of the chimeric Bcr-Abl oncoprotein is responsible for the transformation of haematopoietic stem cells and the symptoms of chronic myeloid leukaemia (CML). Imatinib targets the tyrosine kinase activity of Bcr-Abl and is a first-line therapy for this malignancy. Although highly effective in chronic phase CML, patients who have progressed to the advanced phase of the disease frequently fail to respond to imatinib or develop resistance to therapy and relapse. This is often due to the emergence of clones expressing mutant forms of Bcr-Abl, which exhibit a decreased sensitivity towards inhibition by imatinib. Considerable progress has recently been made in understanding the structural biology of Abl and the molecular basis for resistance, facilitating the discovery and development of second generation drugs designed to combat mutant forms of Bcr-Abl. The first of these compounds to enter clinical development were BMS-354825 (BristolMyersSquibb) and AMN107 (Novartis Pharma) and, from Phase I results, both of these promise a breakthrough in the treatment of imatinib-resistant CML. Recent advances with these and other promising classes of new CML drugs are reviewed. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据