4.8 Article

Anderson localization in carbon nanotubes:: Defect density and temperature effects -: art. no. 266801

期刊

PHYSICAL REVIEW LETTERS
卷 95, 期 26, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.95.266801

关键词

-

向作者/读者索取更多资源

The role of irradiation induced defects and temperature in the conducting properties of single-walled (10,10) carbon nanotubes has been analyzed by means of a first-principles approach. We find that divacancies modify strongly the energy dependence of the differential conductance, reducing also the number of contributing channels from two (ideal) to one. A small number of divacancies (5-9) brings up strong Anderson localization effects and a seemly universal curve for the resistance as a function of the number of defects. It is also shown that low temperatures, about 15-65 K, are enough to smooth out the fluctuations of the conductance without destroying the exponential dependence of the resistivity as a function of the tube length.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据