4.8 Article

Metal/semiconductor core/shell nanodisks and nanotubes

向作者/读者索取更多资源

The low melting point of Zn and the high melting point of ZnO, as well as their hexagonal crystal structures, present great advantages for designing and fabricating various metal/semiconductor core/shell nanostructures. By controlling the kinetics in the Zn and ZnO system, the lower-energy facets, and the oxidation rates of different surfaces, we can control the fabrication of Zn/ZnO core/shell single-crystal, polycrystalline, and mesoporous nanodisks, as well as a variety of ZnO nanotubes. The oxidation of a Zn nano-object leads to the formation of Zn/ZnO core/shell nanodisks. A lower oxidation temperature results in the formation of a single-crystal-like Zn/ZnO core/shell structure, while a higher oxidation temperature leads to the formation of textured and even polycrystalline nanostructures. A re-sublimation process of Zn in the core leaves a ZnO shell structure. This is an approach for synthesizing metal/semiconductor core/shell or composite nanostructures. This article offers a detailed description of the kinetics controlling the procedures, the nanostructures obtained, their morphological and crystal structures, and their formation mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据