4.7 Article

Microtubules modulate the stiffness of cardiomyocytes against shear stress

期刊

CIRCULATION RESEARCH
卷 98, 期 1, 页码 81-87

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000197785.51819.e8

关键词

cytoskeleton; microtubules; cardiomyocyte

向作者/读者索取更多资源

Although microtubules are involved in various pathological conditions of the heart including hypertrophy and congestive heart failure, the mechanical role of microtubules in cardiomyocytes under such conditions is not well understood. In the present study, we measured multiple aspects of the mechanical properties of single cardiomyocytes, including tensile stiffness, transverse (indentation) stiffness, and shear stiffness in both transverse and longitudinal planes using carbon fiber-based systems and compared these parameters under control, microtubule depolymerized (colchicine treated), and microtubule hyperpolymerized (paclitaxel treated) conditions. From all of these measurements, we found that only the stiffness against shear in the longitudinal plane was modulated by the microtubule cytoskeleton. A simulation model of the myocyte in which microtubules serve as compression-resistant elements successfully reproduced the experimental results. In the complex strain field that living myocytes experience in the body, observed changes in shear stiffness may have a significant influence on the diastolic property of the diseased heart.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据