4.8 Article

Rapidly functionalized, water-dispersed carbon nanotubes at high concentration

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 128, 期 1, 页码 95-99

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja053003q

关键词

-

向作者/读者索取更多资源

Microwave-assisted functionalization of single-wall carbon nanotubes (SWNTs) in a mixture of nitric and sulfuric acids was carried out to synthesize highly water-dispersible nanotubes. Stable concentrations as high as 10 mg/mL were obtained in deionized water that are nearly 2 orders of magnitude higher than those previously reported. This was after only 3 min of functionalization reaction. Fourier transform infrared spectra showed the presence of carboxylated (-COOH) and acid sulfonated (-SO2 center dot OH or -SO3- H+) groups on the SWNTs. On the basis of elemental analysis, it was estimated that one out of three carbon atoms was carboxylated, while one out of 10 carbon atoms was sulfonated. The Raman spectra taken both in aqueous dispersion and in the solid phase indicated charge transfer from the SWNT backbone to the functional groups. Scanning electron microscope images of thin films deposited from an aqueous suspension showed that the SWNTs were aligned parallel to one another on the substrate. The images also indicated some reduction in average length of the nanotubes. Transmission electron microscope images of thin films from a dilute methanol dispersion showed that the SWNTs were extensively debundled. Laser light scattering particle size measurements did not show evidence for the existence of particles in the 3-800 nm size range, indicating that the functionalized SWNTs might have dispersed to have formed a true solution. Moreover, the microwave-processed SWNTs were found to contain significantly smaller amounts of the original iron catalyst relative to that present in the starting nanotubes. The electrical conductivity of a thermally annealed thin membrane obtained from the microwave-functionalized SWNTs was found to be the same as that of a similar membrane obtained from a suspension of the starting nanotubes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据