4.5 Article

Generation of atomistic models of periodic mesoporous silica by kinetic Monte Carlo simulation of the synthesis of the material

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 1, 页码 319-333

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0551871

关键词

-

向作者/读者索取更多资源

We have developed a molecular simulation method for the generation of realistic atomic-level models for periodic mesoporous silicas. Using simplified interaction potentials and simplified representations of the templating micelles, the simulation follows the reaction path of the hydrothermal synthesis and calcination of the silica material in a kinetic Monte Carlo (kMC) simulation. The only input to the simulation is the geometry of the micelle and the number of silicic acid monomers at the beginning of the synthesis. We simulated the adsorption properties of the PMS models using Grand Canonical Monte Carlo simulation. With use of MCM-41 materials of different pore sizes as a prototype material, experimental and simulated adsorption isotherms for nitrogen, ethane, and carbon dioxide were compared, showing good agreement between simulation and experiment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据