4.6 Article

Distinct BIR domains of cIAP1 mediate binding to and ubiquitination of tumor necrosis factor receptor-associated factor 2 and second mitochondrial activator of caspases

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 2, 页码 1080-1090

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M509381200

关键词

-

资金

  1. NIA NIH HHS [AG15402] Funding Source: Medline
  2. NIDDK NIH HHS [DK067515] Funding Source: Medline

向作者/读者索取更多资源

Inhibitor of apoptosis proteins (IAPs) regulate apoptosis primarily by inhibiting caspase-family proteases. However, many IAPs also possess E3 ligase (ubiquitin-protein isopeptide ligase) activities implicated in both caspase-dependent and -independent functions of these proteins. Here, we compared the structural features of cIAP1 responsible for its interactions with two known target proteins, TRAF2 and SMAC. The N-terminal (BIR1) and C-terminal (BIR3) BIR domains of cIAP1 were determined to be necessary and sufficient for binding TRAF2 and SMAC, respectively. Mutational analysis of the BIR1 and BIR3 domains identified critical residues required for TRAF2 and SMAC binding. Using these mutants, cIAP1-mediated ubiquitination of TRAF2 and SMAC in vitro was determined to be correspondingly dependent on intact binding sites on BIR1 and BIR3. Because TRAF2 regulates NF-kappa B activation, the effects of cIAP1 on TRAF2-mediated induction of NF-kappa B transcriptional activity were studied using reporter gene assays. Expression of a fragment of cIAP1 encompassing the three BIR domains (but not full-length cIAP1) greatly enhanced TRAF2-induced increases in NF-kappa B activity, providing a convenient assay for monitoring BIR-dependent effects of cIAP1 on TRAF2 in cells. BIR1 mutants of the BIR1-3 fragment of cIAP1 that failed to bind TRAF2 lost the ability to modulate NF-kappa B activity, demonstrating a requirement for BIR1-mediated interactions with TRAF2. Altogether, these findings demonstrate the modularity and diversification of BIR domains, showing that a single cIAP can direct its E3 ligase activity toward different substrates and can alter the cellular functions of different protein targets in accordance with differences in the specificity of individual BIR domains.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据